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Abstract. We propose an explanation of the pseudogap features discovered in the normal state
specific heat and magnetic susceptibility of cuprates. We explain the magnitudes of the carrier
specific heat and susceptibility as well as their universal scaling with temperature over a wide
range of doping of YBa2Cu3O7−δ .

There is strong evidence for the normal state pseudogap in high-Tc cuprates from magnetic
susceptibility [1], specific heat [2], angle-resolved photoemission (ARPES) [3], tunnelling
[4], and some kinetic measurements [5]. One view supported by ARPES is that the gap
reflects precursor superconducting correlations in the BCS-like state below some characteristic
temperatureT ∗ without long-range phase coherence [6]. Testing this hypothesis with specific
heat [2] and tunnelling [4] data, it is found that this view cannot be sustained. In particular,
there is no sign that the gap closes at a given temperatureT ∗, which rules out any role
of superconducting phase or spin fluctuations [4]. On the other hand, the strong-coupling
extension of the BCS theory based on the multi-polaron perturbation technique firmly predicts
the transition to a charged Bose liquid in the crossover region of the BCS coupling constant
λ ' 1 [7]. The (bi)polaronic theory of carriers in cuprates, confirmed by infrared spectroscopy
[8] and by the isotope effect on the carrier mass [9], provides a natural microscopic explanation
of the normal state gap [10]. Within the framework of the bipolaron theory, the ground state
of cuprates is a charged Bose liquid of intersite bipolarons where single polarons exist only
as excitations with an energy of1/2 or more [11]. A characteristic temperatureT ∗ of the
normal phase is a crossover temperature of the order of1/2 where the population of the
upper polaronic band becomes comparable with the bipolaron density. Along this line the
normal state kinetics of cuprates has been explained [12, 13] and a theory of tunnelling and
photoemission (PES) has been developed [14].

In this letter, we find a universal temperature scaling of the specific heat and magnetic
susceptibility of YBa2Cu3O7−δ and provide a microscopic explanation with bipolarons and
thermally excited polarons. The central ideas of our model are as follows:

(i) Charge carriers are intersite real-space pairs of holes.
(ii) In addition to introducing hole charge carriers, doping also introduces considerable

disorder and localized states. Owing to interparticle Coulomb repulsion [15], a localization
well contains either a bipolaron or an unpaired polaron but not both. The interaction
of polarons and bipolarons in the extended states is taken into account within the
Hartree–Fock approximation and is included in their band dispersion.
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(iii) At finite temperatures, a fraction of the carriers exist as unpaired hole polarons. These
particles are responsible for the magnetic response of the system.

We also employ the simplification that the tunnelling probability between localization
wells is negligible. This allows the partition functionZl for the localized part of the system to
be written as

Zl =
∏
i

Zi

Zi = 1 + 2e(µ−Ei)β + e2(µ−Ei+1/2)β (1)

where we have assumed the no double occupancy condition.1, µ andEi are respectively
the bipolaron binding energy, chemical potential and a single-particle energy level of the well,
whilstβ = 1/kBT . The point to note about equation (1) is that the localized partition function
cannot be factorized into a product of two particle and one particle partition functions. The
physics of localized bipolarons and polarons is thus not separable implying that only one
density of states (DOS) profile should be taken for localized particles. The density of localized
particles is determined by

nl = −∂�l
∂µ

(2)

with �l = −β−1 logZl . This gives

nl = 2
∫ 0

−∞
ρl(E)fl(E)dE (3)

where

fl(E) = {1 +g[β(E − µ−1/2)]}−1 (4)

with g(ξ) = exp(ξ)cosh(ξ/2 + β1/4)/cosh(ξ/2− β1/4). ρl(E) refers to the density of
localized states per spin. We can then write for the number conservation condition:

2nb + np + nl = x (5)

wherenb,p is the density of delocalized bipolarons and polarons, respectively, andx the
doping per unit cell. For La2−xSrxCuO4, x is given by the atomic concentration of Sr whilst
in YBa2Cu3O7−δ, x = 2(1− δ)/3. The free particle density is given by

nb =
∫ ∞

0
dEρb(E)fb(E)

np = 2
∫ ∞

0
dEρp(E)fp(E) (6)

wherefb(E) = {exp[β(E − 2µ−1)] − 1}−1 andfp(E) = {exp[β(E − µ)] + 1}−1, so that
equation (5) allows us to determine the chemical potentialµ(T ) if bipolaronic and polaronic
DOS,ρb,p(E), are known. The finite bipolaron bandwidth, the one-dimensional singularity
of (bi)polaronic DOS [16] and a finite width of the localized tail give rise to a Schottky-like
anomaly of the specific heat and a Curie-like temperature dependence of the susceptibility,
which are observed at high temperatures in overdoped samples, as explained in [13]. Here we
consider the underdoped region, where the potential wells are deep and impurity-scattering
broadening of the Van Hove singularities (VHS) is large, due to ineffectiveness of a screening by
carriers. The previous analysis [10, 14] showed that the characteristic width of the localized
tails and VHS is about 20 meV. We can thus neglect any DOS structure for the relevant
temperature range by takingρl(E) = ρp(E) = 2ρb(E) ' N(0) with N(0) a single-particle
DOS at the mobility edge,E = 0. The bipolaron chemical potential 2µ +1 is then pinned at



Letter to the Editor L17

the mobility edge, givingµ = −1/2, as follows from equation (5) forkBT N(0) � 1. This
assumption greatly simplifies further calculations. Including the contribution of delocalized
bipolarons, thermally excited polarons and localized carriers, we find a universal temperature
scaling of the energy,E(T ) = f (β1), which allows us to extract the normal state gap from the
experimental specific heat,C = ∂E/∂T , without any fitting parameters as shown in figure 1.
In the low-temperature limit,β1 � 1 we getg(ξ) ' exp(2ξ) and a linear specific heat with
an exponential correction

C ' kBN(0)β−1

[
π2

4
+
(1β)2χ(T )

4µ2
BN(0)

]
(7)

whereχ(T ) is the exponential spin susceptibility found below. This result is in contrast with
an expectation that the specific heat of nondegenerate bipolarons is temperature independent
aboveTc. The random potential, as well as a low-dimensional DOS, pins the chemical potential
at the mobility edge even in the normal state, so the bipolaron density (and hence the specific
heat) is proportional to temperature. The latter leads to a temperature dependent Hall effect
[12] and explains other anomalous kinetic properties of cuprates [17]. Half of the bipolaron
binding energy1/2, which is an energy gap between the bottoms of bipolaronic and polaronic
bands, has been estimated from 400 K to 50 K depending on doping [13]. In this temperature
range, one has to calculateγ = C/T by numerical integration with the result shown in figure 1.
There is a clear scaling of experimentalγ with β1 in a wide doping range of YBa2Cu3O7−δ.
The corresponding values of1 are shown in figure 2. They follow the same doping dependence
as that determined phenomenologically [2] and are of the same order of magnitude. It should
be noted though that the d-wave approach gives consistently higher gap values than those found
here.

Figure 1. Universal scaling ofγ /k2
BN(0) with 2kBT /1 compared with theory (curve) for

YBa2Cu3O7−δ (N (0) = 1.17 eV−1 per spin).

Following the analysis of [18], we compareγ with the differential magnetic susceptibility
χ∗ = ∂(χT )/∂T . The experimental data forχ∗(T ) are perfectly consistent with our model.
There are two contributions to the magnetic response, from delocalized (thermally excited)
polarons,χp, and from localized ones,χl . For the first contribution we obtain, by the use of
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Figure 2. Theoretical normal state gap as a function of doping.

the Kubo formula for free fermion magnetization,

χp(T ) = 2µ2
BN(0)[exp(β1/2) + 1]−1 (8)

whereµB is the Bohr magneton. The single-well partition function in an external magnetic
field,H , is given by

Zi = 1 + e2(µ−E+1/2)β + e(µ−E+µBH)β + e(µ−E−µBH)β . (9)

Differentiating twice, the corresponding� potential with respect to the magnetic field yields

χl(T ) = µ2
Bβ

∫ 0

−∞
dEρl(E)f

p

l (E) (10)

wheref pl (E) = [1 + exp(β1/2)cosh((E − µ − 1/2)β)]−1 is the distribution function of
localized polarons. If DOS is a constant,ρl(E) = N(0), and temperature is low,β1� 1, we
obtain an exponential temperature dependence of the spin susceptibility as

χ(T ) = χp(T ) + χl(T ) ' 2µ2
BN(0)(1 +π/4)exp(−β1/2). (11)

The numerical integration of equation (10) for the entire temperature range, with the constant
DOS, yields a universal scaling ofχ∗ as a function ofβ1. This is nicely confirmed by
experiment, as shown in figure 3. It is remarkable that, with about the same1 and DOS
(see figure 2), one can describe both the specific heat and spin susceptibility of underdoped
YBa2Cu3O7−δ. This is at variance with some opinions that the experimental Wilson ratio is
difficult to understand within the framework of our model. In fact, thermally excited polarons
provide the spin susceptibility and a finite (temperature dependent) Wilson ratio close to the
experimental one, while the binding energy of bipolarons is responsible for the normal state
gap. Another strong indication of the existence of bipolarons comes from the resistive and
thermodynamic measurements in the critical region. A divergent upper critical field was
measured in many cuprates, as predicted by one of us [19], and the magnetic field dependence
of the specific heat jump is just that of the charged Bose gas [20]. Recently, it has been
established that there is a normal state gap in ARPES and SIN tunnelling, existing well above
Tc irrespective of the doping level [21, 3, 4]. The ‘Fermi surface’ showed missing segments
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close to the points [21] where we expect the Bose–Einstein condensation [14]. A plausible
explanation is that there are two liquids in cuprates, the normal Fermi liquid and the charged
Bose liquid (this mixture has been theoretically discussed a long time ago [22]). A temperature
independent paramagnetic background in the magnetic susceptibility (figure 3) might be due
to a normal Fermi liquid component coexisting with the (bi)polarons, as suggested by several
authors [23, 24, 25]. If a Fermi surface of the Fermi liquid is large then it is difficult to see
how this scenario could explain the doping dependencies of dc and ac conductivity as well
as of the magnetic susceptibility and carrier specific heat, which scales with doping. On the
other hand, the single-particle spectral function of a pure bipolaronic system has been recently
derived by one of us [14]. It describes the spectral features of tunnelling and photoemission in
cuprates. Any single-particle spectral weight at the chemical potential appears in our model
due to single polaronic states, localized by disorder inside the normal state gap. The model is
thus compatible with the doping evolution of thermodynamic and kinetic properties.

Figure 3. Universal scaling of the differential spin susceptibility,χ∗(T )/µ2
BN(0) = (χ∗exp −

0.39×10−4 emu mol−1)/µ2
BN(0) compared with theory (curve). For experimental data, see [18].

We may therefore conclude that the formation of real space pairs (bipolarons) aboveTc
and their partial localization by the random potential are essential features of the normal state
thermodynamics of YBa2Cu3O7−δ and other cuprates exhibiting similar normal state gap. In
particular, a comprehensive study of the magnetic susceptibility of La2−xSrxCuO4 [23] and
of the doping dependence of superconducting parameters in HgBa2CuO2+δ [26] has firmly
confirmed the bipolaronic scenario. We have also fitted the specific heat and susceptibility
of La2−xSrxCuO4 with bipolarons and thermally excited polarons in a wide range of doping
[27]. Hence, the bipolaron theory can explain such non-Fermi-liquid features as a large carrier
entropy, the gap aboveTc, temperature dependences ofγ andχ and their ratio in many cuprates.

We greatly appreciate the enlightening discussions with J R Cooper, J T Devreese, A Junod,
H Kamimura, W Y Liang, J W Loram, J L Tallon and G Zhao.
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